Inverse probability weighting to estimate causal effect of a singular phase in a multiphase randomized clinical trial for multiple myeloma
نویسندگان
چکیده
BACKGROUND Randomization procedure in randomized controlled trials (RCTs) permits an unbiased estimation of causal effects. However, in clinical practice, differential compliance between arms may cause a strong violation of randomization balance and biased treatment effect among those who comply. We evaluated the effect of the consolidation phase on disease-free survival of patients with multiple myeloma in an RCT designed for another purpose, adjusting for potential selection bias due to different compliance to previous treatment phases. METHODS We computed two propensity scores (PS) to model two different selection processes: the first to undergo autologous stem cell transplantation, the second to begin consolidation therapy. Combined stabilized inverse probability treatment weights were then introduced in the Cox model to estimate the causal effect of consolidation therapy miming an ad hoc RCT protocol. RESULTS We found that the effect of consolidation therapy was restricted to the first 18 months of the phase (HR: 0.40, robust 95 % CI: 0.17-0.96), after which it disappeared. CONCLUSIONS PS-based methods could be a complementary approach within an RCT context to evaluate the effect of the last phase of a complex therapeutic strategy, adjusting for potential selection bias caused by different compliance to the previous phases of the therapeutic scheme, in order to simulate an ad hoc randomization procedure. TRIAL REGISTRATION ClinicalTrials.gov: NCT01134484 May 28, 2010 (retrospectively registered) EudraCT: 2005-003723-39 December 17, 2008 (retrospectively registered).
منابع مشابه
Causal inference from longitudinal studies with baseline randomization.
We describe analytic approaches for study designs that, like large simple trials, can be better characterized as longitudinal studies with baseline randomization than as either a pure randomized experiment or a purely observational study. We (i) discuss the intention-to-treat effect as an effect measure for randomized studies, (ii) provide a formal definition of causal effect for longitudinal s...
متن کاملAdjustment for treatment changes in epilepsy trials: A comparison of causal methods for time-to-event outcomes.
Background When trials are subject to departures from randomised treatment, simple statistical methods that aim to estimate treatment efficacy, such as per protocol or as treated analyses, typically introduce selection bias. More appropriate methods to adjust for departure from randomised treatment are rarely employed, primarily due to their complexity and unfamiliarity. We demonstrate the use ...
متن کاملThe Effect of High Fiber Diet on Lipid Profile of Obese Young Girls: a Randomized Crossover Clinical Trial
Introduction: The aim of the present study was to evaluate the effect of high fiber diet on lipid profile of obese adolescent girls. Methods: This randomized cross over clinical trial was conducted in southern Iran. A total of 56 patients were randomly assigned into two groups. In the first phase, the experiment group had a high fiber diet while the control group consumed their usual diet for ...
متن کاملEstimating treatment effects from a randomized clinical trial in the presence of a secondary treatment.
In randomized clinical trials involving survival time, a challenge that arises frequently, for example, in cancer studies (Manegold, Symanowski, Gatzemeier, Reck, von Pawel, Kortsik, Nackaerts, Lianes and Vogelzang, 2005. Second-line (post-study) chemotherapy received by patients treated in the phase III trial of pemetrexed plus cisplatin versus cisplatin alone in malignant pleural mesothelioma...
متن کاملMissing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation.
Standard statistical analyses of observational data often exclude valuable information from individuals with incomplete measurements. This may lead to biased estimates of the treatment effect and loss of precision. The issue of missing data for inverse probability of treatment weighted estimation of marginal structural models (MSMs) has often been addressed, though little has been done to compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016